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(57) ABSTRACT

A digital Earth system based upon a hexagonal subdivision of
a polyhedron representation of the Earth utilizes a computer-
implemented method for assigning identifiers. The method
comprises defining a tessellation of hexagonal cells, the tes-
sellation having a first axis and a second axis, the first axis
being perpendicular to a first side of the hexagonal cells, the
second axis being 120 degrees from the first axis and being
perpendicular to a second side of the hexagonal cells; select-
ing an origin cell for the tessellation and assigning a unique
identifier comprising a first value and a second value thereto;
and assigning a unique identifier to each cell other than the
origin cell, the unique identifier for each of these cells com-
prising a first vector value and a second value, the first vector
value and the second vector value being indicative of the
location of the cell to the origin cell along the first and second
axis respectively.
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DIGITAL EARTH SYSTEM FEATURING
INTEGER-BASED CONNECTIVITY
MAPPING OF APERTURE-3 HEXAGONAL
CELLS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 61/791,630 filed on Mar.
15, 2013, and entitled “DIGITAL EARTH SYSTEM FEA-
TURING INTEGER-BASED CONNECTIVITY MAP-
PING OF APERTURE-3 HEXAGONAL CELLS”, the entire
contents of which are hereby incorporated by reference
herein for all purposes.

TECHNICAL FIELD

[0002] Theembodiments described herein relate to systems
and methods for storing geospatial data related to various
geographical locations, and in particular to systems and meth-
ods for providing a discrete global grid system (DGGS) for
storing the data.

INTRODUCTION

[0003] The Digital Earth framework refers to a framework
for storing geospatial data. Geospatial data may include infor-
mation that is associated with various geographical locations
around the Earth. The Digital Earth allows users to access
information associated with various locations around the
Earth by manipulating a virtual representation of the Earth
and zooming in and out of the virtual Earth to obtain a desired
level of information.

[0004] To facilitate a Digital Earth framework, a virtual
representation of the Earth may be partitioned into a number
of discrete cells, each cell representing an area (for e.g. a
location) on Earth. The data associated with the locations
inside the cell is then associated with the cell representing that
location. In other words, the cells are representative of an area
containing points of interest.

[0005] There currently exist several methods in which the
Earth may be partitioned into a number of discrete cells at
different resolutions based on a polyhedral representation of
the Earth. There are also different ways to divide up the faces
of the polyhedral to form a plurality of cells associated with
various locations on the Earth. As the data associated with the
location is stored in association with the cells, itis desirable to
identify the cells to facilitate subsequent retrieval of the cells
and the data associated therewith. Efficient retrieval of the
cells may help speed up essential operations such as neigh-
bourhood finding, zooming in and/or zooming out.

[0006] Accordingly, there is a need for a Digital Earth
framework that supports efficient retrieval of information
associated with discrete cells of different resolutions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Some embodiments will now be described, by way
of'example only, with reference to the following drawings, in
which:

[0008] FIG. 1 is a schematic diagram illustrating a trun-
cated icosahedron which may serve as a base polyhedron to
obtain a virtual representation of the Earth according to some
embodiments;

[0009] FIG. 2 is a schematic diagram illustrating partition-
ing of the faces of the truncated icosahedron shown in FIG. 1
into a tessellation of cells in a first resolution;
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[0010] FIG. 3 is a schematic diagram illustrating partition-
ing of the faces of the truncated icosahedron shown in FIG. 2
into a tessellation of cells in a second resolution that is finer
than the first resolution;

[0011] FIG. 4 is a schematic diagram illustrating partition-
ing of the faces of the truncated icosahedron shown in FIG. 2
into a tessellation of cells in a third resolution that is finer than
the second resolution;

[0012] FIG. 5 is a schematic diagram illustrating congru-
ency of quad cell partitioning;

[0013] FIG. 6 is a schematic diagram illustrating incongru-
ence of aperture three hexagonal cell partitioning that may be
applied to the icosahedron shown in FIG. 1;

[0014] FIG. 7 is a schematic diagram illustrating identifiers
assigned to various resolutions of aperture 3 hexagonal cells
according to PYXIS indexing that may be applied to the
truncated icosahedron shown in FIG. 1;

[0015] FIG. 8 is a schematic diagram illustrating a system
for providing geospatial data based upon integer-based index-
ing of aperture-3 hexagonal cells in tessellations of various
resolutions according to some embodiments;

[0016] FIG. 9A is a schematic diagram illustrating orienta-
tion of the axes of the hexagonal cells in a tessellation in an
even resolution referenced by the server in FIG. 8;

[0017] FIG. 9B is a schematic diagram illustrating orienta-
tion of the axes of the uniform hexagonal cells in a tessellation
in an odd resolution referenced by the server in FIG. 8;
[0018] FIG. 10A is a schematic diagram illustrating inte-
ger-based identifiers including step vectors along uand v axes
as shown in FIG. 9A;

[0019] FIG. 10B is a schematic diagram illustrating inte-
ger-based identifiers including step vectors along uand v axes
as shown in FIG. 9B;

[0020] FIG. 10C is a schematic diagram illustrating inte-
ger-based identifiers including the step vectors shown in FIG.
10A and resolution r;

[0021] FIG. 10D is a schematic diagram illustrating inte-
ger-based identifiers including the step vectors shown in FIG.
10B and resolution r+1;

[0022] FIG. 11 is a schematic diagram illustrating the rela-
tionship between the axes for hexagonal cells shown in FIG.
9A and the axes in a Cartesian system;

[0023] FIG. 12 is a schematic diagram illustrating the rela-
tionship between the axes for hexagonal cells shown in FIG.
9B and the axes in a Cartesian system;

[0024] FIG. 13 is a schematic diagram illustrating the dis-
tances between centroid of neighbouring cells in the integer-
based index referenced by the server in FIG. 8 and a point in
the Cartesian coordinate;

[0025] FIG. 14 is a schematic diagram illustrating various
vectors in tessellations of odd and even resolutions shown in
FIGS. 9A and 9B;

[0026] FIG. 15 is a schematic diagram illustrating the rela-
tionship between vectors in resolution r and vectors in reso-
lution r+1 when r is in a tessellation of even resolution in the
integer-based index referenced by the server in FIG. 8;
[0027] FIG. 16 is a schematic diagram illustrating the rela-
tionship between vectors in resolution r and vectors in reso-
lution r+1 when r is in a tessellation of odd resolution in the
integer-based index referenced by the server in FIG. 8;
[0028] FIG.17is a schematic diagram illustrating an exem-
plary case where cell that is located at a vertex of a plurality
of cells that may have to be addressed by the server in FIG. 8;
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[0029] FIG. 18 is a schematic diagram illustrating exem-
plary cases that may have to be addressed by the server in F1G.
8 where the possible parent cells of a given cell can be deter-
mined by performing a neighbourhood check of the coarse
cells;

[0030] FIG. 19 is a schematic diagram illustrating aperture
three hexagonal cell partitions in a first resolution of the
unfolded truncated icosahedral shown in FIG. 1 assigned with
integer-based unique identifiers;

[0031] FIG. 20 is a schematic diagram illustrating aperture
three hexagonal cell partitions in a finer resolution than the
resolution shown in FIG. 19;

[0032] FIG. 21 is a schematic diagram illustrating the tes-
sellation shown in FI1G. 19 layered with the tessellation shown
in FIG. 20 to illustrate how some points may fall outside of
cells in tessellations of some resolutions;

[0033] FIG. 22 is a schematic diagram illustrating the
unfolded truncated icosahedron shown in FIG. 19 at a second
resolution when the second resolution is generated using the
shape of the first resolution;

[0034] FIG. 23 is a schematic diagram illustrating the loca-
tions of the cells of truncated icosahedron in FIG. 22 when the
plane shown therein is folded;

[0035] FIG. 24 is a schematic diagram illustrating how the
connected partial cells shown in FIGS. 22 and 23 may be
located;

[0036] FIG. 25 is a schematic diagram illustrating aperture
three hexagonal cell partitions in a first resolution of the
unfolded truncated icosahedral shown in FIG. 1 assigned with
PYXIS unique identifiers;

[0037] FIG. 26 is a schematic diagram illustrating the rela-
tionship between exemplary identifier PYXIS digits and the
vectors in the integer-based identification system at odd and
even resolutions;

[0038] FIG. 27 is a schematic diagram illustrating three
resolutions of cells assigned with PYXIS identifiers;

[0039] FIG. 28 is a schematic diagram illustrating the cells
shown in FIG. 27 with integer-based identifiers correspond-
ing to the PYXIS identifiers;

[0040] FIG.29is a schematic diagram illustrating an exem-
plary scenario where the location-based identifier for a cell
may invalid due to fractals of PYXIS indexing;

[0041] FIG. 30 is a schematic diagram illustrating how to
determine a corresponding PYXIS identifier from a given
integer-based identifier;

[0042] FIG. 31 is a schematic diagram illustrating conver-
sion vectors for pentagonal faces represented by hexagons in
2D domain;

[0043] FIG. 32 is a flow chart illustrating a method for
storing data related to geographical locations according to
some embodiments;

[0044] FIG. 33 is a schematic diagram that (a) shows coor-
dinate systems of lattices L, and L, at two successive resolu-
tions, and (b) indicates that (1,0),=(2,0),, (0,1),=(0,2),;
[0045] FIG. 34 is a schematic diagram that (a) shows the
coordinate system of lattices at three successive resolutions of
the dual 1-to-3 refinement, where O is the origin, and (b)
shows that a combination of vectors at L; makes (1,0), and
(0,1)0:

[0046] FIG.35isaschematic diagram that (a) showsL,,L,,
and L, and their coordinate systems, where O is the origin,
lattices and coordinate systems have similar color and thick-
ness and (b) shows that a combination of vectors at L, and L,
makes (1,0), and (0,1);
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[0047] FIG. 36 is aschematic diagram that (a) shows matrix
R_, and (b) shows matrix R ;

[0048] FIG. 37 is a schematic diagram that shows that
applying one step of R, along with one step of R_ leads to
aligned coordinate systems for L, and L,;

[0049] FIG. 38 is a schematic diagram that (a) shows that
T,.r1s applied on the coordinate systems. and (b) shows that
after two resolutions, coordinates are aligned;

[0050] FIG. 39 is aschematic diagram that (a) shows primal
1-to-4 refinement and its coordinate systems in three succes-
sive resolutions, and (b) shows primal 1-to-7 refinement and
its coordinate systems in three successive resolutions;
[0051] FIG. 40 is a schematic diagram that (a) shows Dia-
mond D is at (a,b),, and (b), (c) show the Hexagons are
covered by D in dual 1-to-3 and primal 1-to-4 refinements
respectively for two successive resolutions;

[0052] FIG. 41 is a schematic diagram that shows unfolded
patterns of the icosahedron (a), octahedron (b) and tetrahe-
dron (c), and that (d) shows hexagon (a,b), and its neighbor-
hood vectors based on the illustrated U-V coordinate system;
and

[0053] FIG. 42 is a schematic diagram that (a) shows hexa-
gons assigned to a diamond of an icosahedron or octahedron,
(b) shows encoding edges of a diamond, and (¢) shows finding
the hexagons that are out of diamond 1. Neighbors of red
hexagon (2,1), is desired.

DESCRIPTION OF SOME EMBODIMENTS

[0054] For simplicity and clarity of illustration, where con-
sidered appropriate, reference numerals may be repeated
among the figures to indicate corresponding or analogous
elements or steps. In addition, numerous specific details are
set forth in order to provide a thorough understanding of the
exemplary embodiments described herein. However, it will
be understood by those of ordinary skill in the art that the
embodiments described herein may be practiced without
these specific details. In other instances, well-known meth-
ods, procedures and components have not been described in
detail so as not to obscure the embodiments generally
described herein.

[0055] Furthermore, this description is not to be considered
as limiting the scope of the embodiments described, but rather
as merely describing the implementation of various embodi-
ments.

[0056] Insome cases, the embodiments of the systems and
methods described herein may be implemented in hardware
or software, or a combination of both. In some cases, embodi-
ments may be implemented in one or more computer pro-
grams executing on one or more programmable computing
devices comprising at least one processor, a data storage
device (including in some cases volatile and non-volatile
memory and/or data storage elements), at least one input
device, and at least one output device.

[0057] Insomeembodiments, each program may be imple-
mented in a high level procedural or object oriented program-
ming and/or scripting language to communicate with a com-
puter system. However, the programs can be implemented in
assembly or machine language, if desired. In any case, the
language may be a compiled or interpreted language.

[0058] Insome embodiments, the systems and methods as
described herein may also be implemented as a non-transitory
computer-readable storage medium configured with a com-
puter program, wherein the storage medium so configured
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causes a computer to operate in a specific and predefined
manner to perform at least some of the functions as described
herein.

[0059] Geospatial from various geographical locations is
collected and associated with virtual locations on the virtual
representation of the Earth to create a Digital Earth. Geospa-
tial data may be collected from various sources such as field
surveys, remote sensing, and so on. The geospatial data asso-
ciated various locations may then be assigned to cells in the
virtual representation of the Earth that corresponds to appro-
priate locations associated with the geospatial data. This type
of system for storing geospatial data may be referred to as a
Discrete Global Grid System (DGGS).

[0060] Integrating and managing a large amount of geospa-
tial data presents a number of challenges to various industries
that are involved in creating a Digital Earth frame work (e.g.
geoprocessing, cartography, and/or computer science indus-
tries). Some of the challenges are outlined herein below.

Selecting a Base Polyhedron

[0061] To assign various geospatial data from various loca-
tions on the Earth to a virtual Earth, it is first necessary to
obtain a suitable virtual representation of Earth. Different
types of polyhedral, such as the icosahedron, dodecahedron,
octahedron, and cube, may be used to approximate the shape
of'the Earth. However, projecting a polyhedron onto a sphere-
shaped object such as the Earth may result areal or angular
distortion which may result in cells of the polyhedron repre-
senting different sizes in areas on the Earth. As such, it is
desirable to select a polyhedron that has reduced angular
distortion such that each cell of the polyhedron is generally
associated with the same amount of area on Earth as other
cells. That is, it is not desirable to have two cells in the same
resolution, which are the same size, but represent differently
sized areas on the Earth.

[0062] A good polyhedron that can be used to approximate
the Earth, as determined based on the Snyder’s equal area
map projection, is the truncated icosahedron with angular
deformation ofless than 3.75° and icosahedron with less than
17.27°. The truncated icosahedron appears to be a more suit-
able option in comparison to other polyhedrons such as the
cube, dodecahedron and icosahedron. An exemplary trun-
cated icosahedron 10 is shown in FIG. 1.

Partitioning the Base Polyhedron

[0063] In addition to selecting a base polyhedron (e.g. the
truncated icosahedron) to provide a base shape for the virtual
Earth, it is also necessary to partition the surfaces of the
polyhedral to form a number of cells representing various
locations on Earth. That is, partitioning the virtual Earth to
obtain a number of cells at various resolutions allow more
accurate discretization, and provision different levels of
details.

[0064] The virtual Earth may be partitioned in a number of
ways. One way to do so is to partition the Earth along the
latitude and longitude lines. Another way to partition the
surface of the virtual Earth is to apply Voronoi cell partition-
ing. However, these types of partitioning of the virtual Earth
produce cells that are of irregular size and/or shape. For
example, latitudes at different distances from the equator will
result in different distances. That is, the latitudes near the
poles are shorter in terms of distance when compared to the
latitudes near the equator. In other words, the distance
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between longitudes varies depending on their location on
Earth. Similarly, Voronoi cell partitioning yield irregular
sized and shaped cells.

[0065] Another way to partition the virtual Earth is to sub-
divide the faces of the truncated icosahedron approximation
of the Earth. The truncated icosahedron’s faces can be sub-
divided into, for example, hexagonal, triangular or quadrilat-
eral shaped cells. Depending on the shape of the cells that the
faces are subdivided into, the cells may be regularly shaped
and/or have consistent neighbourhood definitions. Neigh-
bourhood definition refers to the arrangement of neighbour-
ing cells relative to a given cell. For instance, although the
quadrilateral cells obtained from subdividing the cube have
the regular shapes, they have inconsistent neighbourhood
conditions at the corners. Moreover, quadrilateral cells have
non-uniform adjacency definitions as each cell may have four
or eight neighbouring cells.

[0066] Generally, it is desirable that cells have regular
shapes as well as a consistent neighbourhood definition. Such
characteristics are useful in a Digital Earth system. That is,
regularity in cell shape simplifies the execution of one or more
frequently used operations (e.g. neighbourhood finding) in
the Digital Earth system such that they may be completed
faster. Furthermore, regularity of cells also helps to create
hierarchical representations that are necessary for applica-
tions that need to show the information in different levels of
details.

[0067] Incomparison to the quadrilateral cells, the hexago-
nal cells have characteristics such as uniform adjacency and
straightforward neighbourhood definitions. Hexagons
shaped cells also appear frequently in nature. For example,
hexagonal shape elements appear in honeycomb structures
and in human’s retina cells. Since the truncated icosahedron’s
faces are mostly comprised ofhexagons (e.g. see hexagons 12
oftruncated icosahedron 10) as shown in F1G. 2, the truncated
icosahedron’s faces could be divided into finer resolution
hexagonal cells (e.g. cells 14) as shown in FIG. 2. However,
the resulting cells 14 of subdividing the truncated icosahe-
dron’s faces are not completely regular due to the appearance
of pentagonal cells 16. Nevertheless, the hexagonal subdivi-
sion appears to be more desirable over other alternatives as
alternative shapes for subdividing cells also provide irregular
representations, and in many cases, higher distortions. FIGS.
3 and 4 show resulting tessellation of cells in successive
resolutions of the truncated icosahedron 10 shown in FIG. 2.

Refinement Between Resolutions

[0068] There are several methods that can be employed to
refine the faces of a polyhedron. In other words, the faces of
the hexagon could be divided into cells of various sizes
depending on the desired resolution. In a relatively high (fine)
resolution, each cell has a relatively smaller size and thus a
larger number of cells are required to cover a given location
on Earth. In contrast, in a relatively low (coarse) resolution,
each cell has arelatively larger size and thus a smaller number
of cells are required to cover the same location.

[0069] For hexagonal cells, the size of the cells in adjacent
resolutions tessellations could be of 1-to-3 refinement (i.e.
“aperture 3”) or of a 1-to-4 refinement (i.e. “aperture 4”*). That
is, each cell in a coarse resolution has an area that is three
times the size of the each cell in the successive finer resolu-
tion. Between the aperture 3 and aperture 4 configurations,
the aperture 3 configuration has a slower area shrinkage rate.
That is, the difference in area between cells of successive
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resolution is three times in the aperture 3 configuration while
it is four times in an aperture 4 configuration. Having a lesser
amount of area change between successive resolutions may
provide a smoother transition between the resolutions in a
Digital Earth system. As such, the aperture 3 configuration
(i.e. the 1-to-3 refinement) tends to provide more visually
appealing transitions between successive resolutions. Having
a lesser amount of area change may also provide more accu-
rate data representations. FIGS. 1 to 4 show the truncated
icosahedron 10 whose vertices are located on a sphere with
the same radius at four successive resolutions of the aperture
3 refinement.

Assigning Identifiers to Cells

[0070] After partitioning the surface of the truncated icosa-
hedron to form a number of cells, it is necessary for the cells
to be assigned identifiers such that it is possible to uniquely
identify each cell. As the number of cells could be in tens or
hundreds of thousands, it is desirable to have an identification
system where cells could be located efficiently.

[0071] One approach is to apply the Quadtrees data struc-
ture to identify the cells at various resolutions. However, the
Quadtrees data structure is a pointer-based data structure and
this type of data structure (i.e. pointer-based data structures)
may not be efficient as it is necessary to store node connec-
tivity links between different resolutions. In order to over-
come this inefficiency, pointer-less or indexing methods such
as Morton indexing may be employed. Unfortunately, these
indexing methods are not directly applicable for hexagonal
cells due to the incongruent nature of the hexagonal shaped
cells.

[0072] A cell structure could be said to be congruent if and
only if an area of each cell in a given coarse resolution exactly
covers the combined area of a number of cells in the adjacent
finer resolution. For example, the quad cell partition 20
shown in FIG. 5 is congruent because the coarse resolution
cell 22 exactly covers the area of four cells 24 in the finer
resolution. In contrast to the quad cell partition 20, the hex-
agonal cell partitions are not congruent. For example, the
hexagonal cell partition 26, as shown in FIG. 6 is not congru-
ent because the coarse resolution cell 28 does not exactly
cover the finer resolution cells 30.

[0073] While the Quadtree based indexing can be applied
to hierarchical hexagonal cells with slight modifications, it is
not efficient in neighbourhood finding operations as there
may not be any relationship between the identifier of a given
cell and identifiers of neighbouring cells.

[0074] Inaddition to the Quadtrees based indexing, the cell
identifiers for hexagonal shaped cells may be organized in
other ways. For example, it is possible to index the aperture 3
hexagonal cells based on barycentric coordinates, using three
components (a, b, ¢) to represent the barycentric coordinates
of'the cells. However, such indexing is designed for the octa-
hedron and does not directly support the truncated icosahe-
dron base polyhedron. Moreover, there may be isolated tri-
angular or quadrilateral cells on which the same rules for
hierarchical traversal or neighbourhood finding cannot be
applied.

PYXIS Indexing

[0075] In another example, as described in U.S. Pat. No.
8,018,458 to Perry Peterson, identifiers may be assigned to
various cells based on the parent-children relationship
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between cells (“PYXIS Indexing”). That is, identifier of par-
ent cells in a coarse resolution are incorporated into the iden-
tifier child cells in a finer resolution. This, for example, could
mean that the prefix of every fine resolution cell is the index
of'its parent. Referring to FIG. 7, illustrated therein are three
resolutions of cells indexed according to PYXIS Indexing. As
shown, cell 32 is in the most coarse resolution tessellation,
and therefore has the largest cell size. The cell 32 is assigned
the identitying value X. The cell 32 has one centroid child cell
34 and six vertex children. The centroid cell 34 has been
assigned the index “X0” by appending the identifier “0” to the
identifier of the parent cell “X”. Similarly, the vertex children
are assigned identifiers “X1” to “X6” by appending identifi-
ers “1”to “6” to the index “X” of the parent cell 32. The cells
36 are the children cells of the parent cell “X0” and they have
been assigned identifiers “X01” to “X06” by appending the
identifiers “1” to “6” to the identifier “X0” of the parent cell
34. This way of assigning identifiers that includes the identi-
fiers of parents may be referred to as “hierarchical indexing”.

[0076] Hierarchical indexing such as the PYXIS Indexing
is very effective at supporting the hierarchical traversal. Such
atraversal involves finding a parent cell’s index given a child
cell’s index and vice versa. However, they may not be as
efficient at finding the neighbours of a given cell since neigh-
bouring cells may have indices that are not related to each
other. As determining neighbouring cells is an important
operation in a Digital Earth system, it is desirable to provide
a hexagonal indexing that is capable to supporting efficient
neighbourhood finding operations in addition to efficient
hierarchical traversal. Furthermore, it is desirable that the
indexing supports conversion between hexagonal indices and
traditional Cartesian coordinates since the Cartesian coordi-
nates may be useful for some operations and applications
such as projection and visualization.

[0077] In addition to hierarchical traversal and determina-
tion of neighbouring cells, determining whether a cell is
“covered” by another cell at a coarser resolution is another
operation that may be used in the Digital Earth system. As the
fractal shapes of coarse cells differs between difterent reso-
Iutions using the PYXIS indexing method, the area covered
by the coarse cell also differs between resolutions. Therefore,
a specific point on the truncated icosahedron may be indexed
by different coarse cells at different resolutions. This property
may cause difficulties in finding a cell that spatially covers a
point with a specific Cartesian coordinate. Indeed, this prop-
erty makes the processes of conversion between the PYXIS
index and a Cartesian coordinate system generally inefficient.

[0078] For example, consider indices of fine cells partially
or completely covered by a coarse cell are needed. The area
indexed by a coarse cell is a fractal-like shape (snowflake)
with a complicated boundary. Therefore, it is difficult to
determine whether a fine hexagon which is spatially covered
by a type “A” hexagon has been indexed by the same cell or it
has been indexed by a type “B” hexagon cell. The types “A”
and “B” for hexagons cells refer to whether the cell is located
at the centroid or at a vertex of its parent cell. If the cell is
located at the centroid of its parent cell, itis a type “A” cell and
it will have 7 children in the next resolution. Alternatively, if
the cell is located at one of the vertices of its parent cell, the
cellis atype “B” cell and it will only have one child in the next
resolution. In other words, cells with seven children are type
“A” cells and cells with only one child are type “B” cells.
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Digital Earth System

[0079] Referring now to FIG. 8, illustrated therein is a
Digital Earth system 50 featuring integer-based indexing for
hexagonal grids. The system 50 comprises a server 52 and a
data storage devices 54, 55 and 57 coupled to the server 52.
The server 52 is in data communication with a network 56
which may be the Internet. Electronic devices 58 may access
the geospatial data stored on the databases 54 and 55 through
the network 56 and the server 52.

[0080] The server 52 includes at least one processor that is
configured to provide a Digital Earth system. The processor
may be configured to provide cells in the database 54 and/or
55.

[0081] In some embodiments, the database 54 may store
geospatial data by associating the geospatial data with cells
that represent locations of Earth. The cells may be obtained by
partitioning a polyhedron representation of the Earth such as
by partitioning a truncated icosahedron representation of the
Earth into aperture-3 hexagons as described above. The cells
in the database 54 are assigned integer-based identifiers,
which may sometimes be referred to as “integer-based
index”, as described herein below.

[0082] In some embodiments, the database 55 may also
store geospatial data by associating the geospatial data with
cells that represents locations of Earth. Similar to the database
54, the cells may be obtained by partitioning a truncated
icosahedron into aperture 3 hexagons. However, the cells in
the database 55 are assigned PYXIS identifiers (i.e. PYXIS
indexing).

[0083] In some embodiments, the database 57 may also
store geospatial data by associating the geospatial data with a
Cartesian coordinate system.

[0084] Insome embodiments, the server 52 may be config-
ured to receive queries from one or more electronic devices
58. The server 52 may also be configured to convert between
various indexing systems to process the queries in one or
more of the databases 54, 55, 57. In some cases, the processor
may be configured to combine the results from two or more of
the databases 54, 55, and 57 to respond to queries received.
[0085] Insomeembodiments, the server 52 may be config-
ured to define a hierarchical series of tessellations of uniform
hexagonal cells. Each tessellation of cells has a resolution that
is indicative of area of each cell in the tessellation. Generally,
a higher resolution represents finer cells and a lower resolu-
tion represents coarser cells. That is, each of the finer cells
would have less area than each of the coarser cells. Accord-
ingly, tessellations with finer (higher) resolution cells will
contain more cells than tessellation with coarser (lower) reso-
lution cells.

[0086] Each of the cells in each tessellation of each resolu-
tion is assigned a unique identifier (i.e. “indexed”) such that
data associated with each cell may be subsequently retrieved
using the unique identifier. In some embodiments, the iden-
tifiers assigned to the cells may be integer-based identifiers as
described with reference to FIGS. 10A-10D herein below. In
some cases, the processor 56 may be configured to assign the
integer-based identifiers.

[0087] Referring now to FIGS. 9A and 9B, illustrated
therein are two tessellations 60 and 61 of hexagonal cells.
Each of the tessellations 60 and 61 has two axes: “u” and “v”.
The axes uand v run perpendicular to two of the sides 62a and
625 of a hexagonal cell 64 and are separated by an angle 6,
which is 120 degrees. In contrast, in the Cartesian coordinate
system, two main axes are at 90 degrees to one another.
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Having the axes at 120 degrees allow the position of the
hexagons to be defined in step vectors along the “u” and “v”
axes as described below with reference to FIGS. 10A and
10B.

[0088] The aperture 3 refinement between tessellations of
adjacent resolutions yields tessellations of cells that have two
alternating orientations. The first orientation of the cells and
the second orientation of the cells differ by 30 degrees and the
axes u and v between the two orientations is rotated by the
same amount (30 degrees).

[0089] Each tessellation of cells will be oriented in one of
the two ways described above in an alternating arrangement.
For example, if a tessellation in an initial resolution “r” is
oriented in the manner shown in FIG. 9A, then the tessellation
in the next resolution “r+1” will be oriented in the other
manner as shown in FIG. 9B. In other words, tessellations that
are of odd resolutions will have one of the two orientations
while the tessellations that are of even resolutions will have
the other of the two orientations. For purposes of the descrip-
tion, the orientation shown in FIG. 9A is said to be for even
resolutions while the orientation shown in FIG. 9B is for odd
resolutions.

[0090] Referring now to FIGS. 10A and 10B, illustrated
therein are tessellations 60a and 604 that are expanded ver-
sions of the tessellations 60a and 605 respectively. Each of the
cells in the tessellations 60a and 606 has been assigned an
identifying value comprising a first vector value and a second
vector value in the format (u, v), where “u” is the first vector
value and “v” is the second vector value.

[0091] The values foru and v are described in steps vectors.
A step vector in the “u” direction indicates a discrete distance
L, along the u axis. A step vector in the “v” direction indicates
a discrete distance L, along the v axis. The distance L, is the
distance between centroid of neighbouring cells in the same
resolution. For example, L, will be the distance between
centroids of cells 64 and 65. The distance of L, and L, will
differ from resolution to resolution as the area of each cell
differ from resolution to resolution. For example, in a finer
resolution where the area of the cells are smaller, the value of
L, and L, would be less when compared to the same for
coarser resolution where the area of the cells are larger.
[0092] As shown in FIGS. 10A and 10B, the origin cell 64
for each of the tessellations 60a and 605 has been selected and
has been given the identifier value (0,0). The remaining cells
are assigned identifier values comprising step vector values
relative to the origin cell 64. As shown, the cell 65 has an
identifying value of (1,0), as the cell 65 is located one step in
the “u” direction and no changes in the “v” direction from the
origin cell 64. Similarly cell 66 is assigned the identifying
value (2,0) since itis located two steps in the “u” direction and
no changes in the “v” direction from the origin cell 64. The
cell 67 is assigned the identifier (1,1) since it is located one
step in the “u” direction and one step in the “v”* direction. The
remaining cells, similar to the cells 65, 66, 67, are assigned
identifiers that include a first vector value and a second vector
value that are indicative of the location of the cells relative to
the origin cell in the u and v axes.

[0093] While the identifier values comprising the step vec-
tors in u and v directions are sufficient to uniquely identify the
cells in a system where there is only one tessellation of cells
in a single resolution, these values are not sufficient to
uniquely identify cells in a system where there is a plurality of
tessellations of cells in various resolutions. As such, a reso-
Iution value “r” has been included along with the u and v
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values to obtain the unique identifier (u, v), for each cell. The
resolution value r in the identifier for a given cell is indicative
of the resolution of the tessellation that the cell is located at.
The unique identifiers comprising the resolution value are
illustrated with reference to FIGS. 10C and 10D.

[0094] InFIG.10C,atessellation 70 having aresolution “r”
is illustrated. The tessellation 70 has the cell 72 which is the
origin cell for that tessellation. The remaining cells in the
tessellation are assigned identifiers (u, v),, where u and v
corresponding to the location of the cells relative to the origin
cell 74 in terms of the step vectors in u axis and the v axis.
[0095] InFIG. 10D, atessellation 74 that is in the next finer
resolution r+1 than the tessellation 70 is illustrated. It should
be understood that the tessellations 70 and 74 are not drawn to
scale. If drawn to scale the area of each cell in tessellation 74
will be one third the area of each cell in the tessellation 70 (i.e.
aperture-3 configuration). The tessellation 74 includes an
origin cell 76 for that tessellation. The cells other than the
origin cell 76 are assigned identifiers (u, v),, ,, whereu and v
corresponding to the location of the cells relative to the origin
cell 76 in terms of the step vectors in u axis and the v axis.
[0096] When the tessellations 70 and 72 are layered, the
origin cells 72 and 76 would share the same centroid. In other
words, the origin cell 76 would be the centroid child of the
origin cell 72. Similarly if there are additional tessellations of
finer resolutions than the resolution r+1, the origin cells for
these resolutions will have the same centroid as the origin cell
in the preceding resolution. For example, the origin cell in
tessellation of resolution r+2, whose identifier would be (0,0)
.2 would have the same centroid as the origin cell (0,0),.,,.
Similarly, origin cell (0,0),., ; would have the same centroid as
the (0,0),.,, and so on.

[0097] After assigning identifying values (u, v), to each of
the cells the geospatial data may be associated with one or
more cells corresponding to the location on FEarth. The
geospatial data may then be retrieved using the identifying
values for the cells and provided upon request. To facilitate
efficient retrieval of geospatial data associated with various
cells, the server 52 may be configured to execute one or more
of the following processes.

Finding Cartesian Location of a Cell

[0098] The server 52 may be configured to convert the
identifier (u, v), of a given cell to obtain a corresponding
Cartesian location (i.e. Cartesian coordinates of the centroid
of the cell). The Cartesian coordinates may be useful for
implementing certain functions in a Digital Earth system such
as data association and visualization. In some cases, some
databases may have geospatial data associated with Cartesian
coordinates. As such, obtaining corresponding Cartesian
coordinates for the cells would allow data in such databases to
be associated with the cells.

[0099] Consider a cell with index (u, v),. The Cartesian
location (%, y) of this cell’s centroid is desired. (u, v), is a
linear combination of two vectors, “u” and “V”, along U and
V axes at resolution r. Therefore, to determine (x, y) based on
(u, v), the Cartesian values of unit vectors along U and V axes
are initially determined and then multiplied in vectors uand v.
In the even resolution case, since V and Y axes in hexagonal
and Cartesian coordinates have the same direction and'Y and
X axes are independent, moving along the V direction has no
effect on the x value. Therefore, x is only dependent on u.
However, moving along the U direction influences both the x
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and y values. Consequently, y must be a combination of uand
v values. Essentially, using simple trigonometry is enough for
finding the relationship.

[0100] Referring now to FIG. 11, illustrated therein is a
tessellation 80 at an even resolution. The tessellation 80
includes unit vector u and unit vector v along U and V axes
respectively. The length L, is the length of a hexagonal cell’s
edge at the even resolution r and unit vector x and unit vector
y are unit vectors in the Cartesian coordinate. The unit vector
x is independent of the unit vector v, therefore unit x=v3L,
c0s(30°)=3/2 L,. Therefore, x=3/2 u L,. However, the unit
vector y is dependent on the y components of both the unit
vector u and the unit vector v. The y components of the unit
vector u and unit vector v are depicted by vectors C and D in
FIG. 11. Consequently, y is dependent on vectors vC and uD.
[0101] Given the above relationships, the value for L, x and
y can be determined as follows:

L=1/VF )
@

3 3)
y=vC—-uD= vx/?TL,—u%L,

[0102] Referring now to FIG. 12, illustrated therein is a
tessellation 82 at an odd resolution. The difference in the odd
resolution and the even resolution is that moving along V
influences both the x and y values in the odd resolution
tessellation. With the same reasoning, value of'y is based on
the value of v, and x is based on the values of bothu and v. Lr
has the same definition as at the even resolution as shown
above for equation (1). The value for x and y in the odd
resolution is as follows:

3 )
x:uC—vD:u\/?;_L,—ng,

®

Finding Integer-Based Index from a Given Cartesian Loca-
tion

[0103] The server 52 may also be configured to determine a
cell including a point with a specific Cartesian coordinate as
follows. That is, given a point with the Cartesian location of
(X, V), the identifying value for a cell associated with the same
location is determined. This differs from the reversing the
process of determining a Cartesian coordinate corresponding
to a vector-based identifier for a given cell described above in
that the point (x, y) is not necessarily the centroid of the cell.
The difference is that in the description above, the centroid
was the base of conversion between Cartesian and hexagonal
coordinates. Here, the Cartesian point (X, y) might not be a
centroid and cells at different resolutions cover an area
including many points. Consequently, the conversion needs
to take this into consideration.

[0104] The equations (6), (7), (8) and (9) are obtained from
the equations (2), (3), (4) and (5) respectively. The equation
(6) and (7) described herein below are derived in a similar
manner to the equations (8) and (9). The values for integer-
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based identifying values u and v at resolution r given a Car-
tesian coordinate (X, y) can be determined as follows.

[0105] Based onthe equation (2) and (3) for even resolution
tessellations, u and v values of the cell that includes the given
x and y values can be determined respectively as follows.

PN EE: ®)
r=uzh = u=|57 ]
3

y:vx/?;_L,—ugL, =

3
y+gL,X=«/3_L,v =
ly+V3x|
== =

Ly "
L3773

L

[0106] Similarly, for odd resolution tessellations, u and v
values of the cell that includes the given x and y values can be
determined respectively as follows.

®

V:FlJ )
3L,

[0107] Since the above discussions are based on the cen-
troid of a cell and some measurement errors may occur
because of the integer approximation of the floor function. To
improve confidence in the accuracy of finding the cell cover-
ing a point, the neighbours of the cell (u, v), obtained from
equations (6) to (9) are checked to find the cell having the least
distance to the point (x, y). In other words, to check the
correctness of a selected cell, the distance between the point
(x,y), and the centroids of the selected cell, and its neighbours
are measured. The cell whose centroid has the least distance
to the point (X, y) is the hexagon which covers this point. For
example, as shown in FIG. 13, point 85 is closest to the
centroid 87 of the cell 89. In some cases, the Cartesian point
may be located on a vertex shared by multiple cells (i.e. there
are more than one cell with the least distance to the point). In
such cases, any one of the cells that has the least distance to
the point (X, y) can be said to include that point.

Neighbourhood Finding

[0108] The identifying values for the neighbouring cells of
a given cell can be determined based on the given cell’s index
as described herein below. Determining the identifying val-
ues of neighbouring cells of a given cell is one of the more
frequently used operations in a Digital Earth system. Two
cells are neighbours when they share an edge. In contrast to
the quadrilateral cells, which have two different definitions
for neighbourhood (four neighbours and eight neighbours),
there is no ambiguity to the number of neighbours in hexago-
nal cells. All hexagonal cells, in both even and odd resolu-
tions, have six neighbours.
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[0109] Referring now to FIG. 14, illustrated therein are six
vectors for even resolution tessellation 90 and odd resolution
tessellation 92, which may be referred to as “neighbourhood
vectors”, which can be added to the identifying value of given
cells 94 and 96 to determine the identifying values for the
neighbouring cells of the given cell 92 and 94. For example,
the neighbours of a cell with index (u, v),, have the following
identifying values: (u+1, v+1),, (u, v+1),, (u-1, v),, (u-1,
v-1),, (W+1, v—-1), and (u+1, v),.

[0110] The computational complexity for determining the
neighbouring identifying values is order “1” (i.e. O(1)). The
order of neighbourhood finding is O(1) because neighbours
of any cell may be found by adding six neighbourhood vec-
tors and performing such an operation does not become more
complex regardless of the number of cells. If the truncated
icosahedron is unfolded, for example as shown in FIG. 19,
some cells are located on the boundary and all of these cells’
neighbours cannot be found using neighbourhood vectors.
Therefore, for the boundary cells, some calculations are
needed that constantly increase the number of multiplica-
tions. However, this does not change the overall complexity
of the determining a neighbouring cells. In contrast, systems
with hierarchically based indices may have a higher complex-
ity (e.g. O(r)) to perform the same operation.

Hierarchical Traversal

[0111] Another operation used in the Digital Earth systems
is hierarchical traversal. Hierarchical traversal refers to the
process of identifying the cells at finer (child cells) or coarser
(parent cells) resolutions that are associated with the same
and/or similar geographic location as a given cell. This allows
a user, for example, to “zoom-in” to a particular location or
“zoom-out” of the particular location.

Moving from Coarse Resolution to Finer Resolution

[0112] Consider a hexagonal cell with index (u, v),. Hier-
archical traversal could refer to determining the identifying
values for the parent or parents of this cell at resolution “r-k”
and/or the child or the children of this cell of this cell at
resolution “r+k”.

[0113] Determining the identifying values for the children
of'a given cell in an even resolution tessellation will now be
described with reference to FIG. 15. In FIG. 15, as the given
cell is at an even resolution tessellation 100, the child is at an
odd resolution tessellation 102.

[0114] The vectors (0,1) and (1,0) in the tessellation 100 as
indicated by reference numerals 104 and 106 respectively
span the space of more than one cell in the tessellation 102.
The vector (0,1) indicated by reference numeral 104 can be
defined as a combination of vectors (1,1) and (0,1) in the
tessellation 102 as indicated by reference numerals 106 and
108 respectively. Similarly, the vector (1,0) indicated by ref-
erence numeral 106 can be defined as a combination of vec-
tors (1,0) and (0,-1) in the tessellation 102 as indicated by
reference numerals 106 and 108 respectively. Accordingly,
the centroid child of cell (1,0),.and (0,1), can be determined as
follows.

(1,0), (1,004 1+(0,= 1)1 =(1,= 1),y (10)

O0,1,=(1,1,41+(0,1)11=(1,2) s an
[0115] The above equations (10) and (11) indicate that
moving one step at the U direction of the coarse resolution
(e.g. in tessellation 100) is equal to moving one step at the V
direction and one step at the —U direction of the next finer
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resolution (e.g. tessellation 102). Based on these two equa-
tions, the vector (a,b), (when r is an even value) is equal to
vector (c,d),,, such that:

(a,6),=a(1,0),+b(0,1),=a(1,-1),,.1+b(1,2),.,1=(a+,

2b-a),. 1 =(C,d)pry 12
[0116] Referring now to FIG. 16, illustrated therein is a
given cell in an odd resolution tessellation 110. As the given
cell is at an odd resolution tessellation 110, the centroid child
is located at an even resolution tessellation 112.
[0117] Equations (13) and (14) below show the relation-
ships between main vectors and equations (15) shows coarse
vector (a, b), and its equivalent vector at resolution r+1 ((c,

d))-
(10,10 +(L D)1= Dy (13)

O,1,~(0,1),., 1+(=1,0),, (=L, 1)y 14

(a,6),=a(1,0),+b(0,1),=a(2,1),,,+b(-1,1),, ,=(2a-b,

a+), 1 =(C. )y 15
[0118] Inorderto define a straightforward hierarchical tra-
versal relationship for more than one resolution, a method for
determining the identifying values of the child cell at two
finer resolutions is provided. Then, it is expanded to deter-
mine hierarchical traversals at other number of finer resolu-
tions. In the case where resolution k is even, (the proof of the
odd case is derived similarly), based on the above equations,
the grandchild (i.e. the cell that has the same centroid point as
the given cell at two finer resolutions) of the given cell can be
determined as follows.

(a,b);,=(a+b,2b-a),, ,=(2(a+b)-(2b-a),(a+b)+(2b-a))

12=(30,30); 5=(.D)gsz 16
[0119] Therefore, after two steps of subdivision, lengths of
vectors are divided by three. This is expected since the aper-
ture 3 (v3) subdivision is being used. With the same reason-
ing, it is possible to determine the identifying value for a child
cell in more than one finer resolution tessellations. For
example, jumping four resolutions, the centroid child ofa cell
with index (a, b), has index (3%a, 3°b),,,.) In general, the
centroid child of cell (a, b), has the index

(3%a,3%0),,,

at resolution k. If k is odd, then

(3%71 a, 3%l b)r+k71

for jumping k-1 resolutions and the equation (12) or (15) for
the last step hierarchical traversal.

[0120] Based on the above description, it is possible to
calculate the identifying value of centroid children of a given
cell at all resolutions. It is also possible to jump two or more
resolutions multiplying indices into three or powers of three.
Moving from a Fine Resolution to a Coarser Resolution
[0121] In some cases, it may be desirable to determine the
identifying value of the parent of a given cell. That is, given a
cell located at a tessellation having a resolution r, it may be
desirable to determine the identifying value of the parent cell
that is located above the given cell in the coarser resolution
tessellation (r-k).
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[0122] Ifthe fine cell is a centroid child of a coarse parent,
it is sufficient to find the cell at the coarse resolution including
the centroid of the fine cell using the equations (6) to (9). The
Cartesian coordinates of the centroid are computed using the
equations (1) to (5). Consequently, if the centroid child has
the index (a, b), and its parent at the resolution r-k is needed,
first, the Cartesian coordinates of the child’s centroid with the
index (a, b), are computed using the equations (1) to (5).
Then, the cell including the centroid at resolution r-k is found
based on Equations (6) to (9).

[0123] In some cases, the given cell is a vertex cell (i.e.
located at the vertex of the parent and not at the centroid), the
given cell has three different possible parent cells in the
adjacent coarser resolution tessellation that partially cover
the cell. For example, as shown in FI1G. 17, the given cell 120
is a vertex cell and has three different possible parent cells
122, 124, 126. In such cases, the identitying value of all three
possible parent cells may first be determined.

[0124] In some cases, it may be possible to determine the
possible parent cells of the given cell by performing a neigh-
bourhood check of the coarse cells, for example as described
above with reference to FIG. 13. That is, if the distances
between the centroid of the given fine cell and the centroids of
three neighbouring cells are equal, then all of the coarse cells
having an equal distance to the centroid of the fine cell are
considered as the possible parent cells of the given fine cell.
This method may not be very reliable because of computa-
tional errors especially at very high resolutions. The follow-
ing method may provide a more robust way of determining
the possible parent cells of a given cell. The method is
described with reference to FIG. 18. The server 52 may be
configured to execute this method to determine the possible
parent cells of a given cell.

[0125] Insome cases, the given cell is at the odd resolution
and its parent cell is at an even resolution or the given cell is
atan even resolution and its parent cell is at an odd resolution.
That is, the given cell and the parent cell are in resolutions that
do not match (i.e. if the given cell is in an odd resolution then
the parent is in an even resolution and vice versa). For
example the given cell 132 is in an odd resolution tessellation
while the possible parent cells 134 are in an even resolution
tessellation. In another example, the given cell 136 is in an
even resolution tessellation while the possible parent cells
138 are in an odd resolution tessellation.

[0126] In other cases, both the given cell and the parent
cells are at the even or odd resolutions. That is, the given cell
and the parent cell are in the matching resolutions. For
example, both the given cell 142 and the possible parent cells
144 are in even resolution tessellations. In another example,
both the given cell 146 and the possible parent cells 148 are in
odd resolution tessellations.

[0127] In the cases where the given cell is at the odd reso-
Iution different resolutions, the parent cell or cells which
cover vertices of the given cell are computed.

[0128] Inthe cases where the given cell and the parent cells
have matching resolutions, the cells or cell which cover the
centroids of six triangles 150 in the given hexagon cell 152 are
computed. For example, any centroid has a Cartesian coordi-
nate (X, y). The Cartesian coordinate can be used to determine
(u, v),. of that cell using equations (6), (7), (8), and (9).

Indexing on the Truncated Icosahedron

[0129] The above description shows how identifying val-
ues could be assigned to hexagon cells on a plane. However,
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as the Earth is a sphere, and a truncated icosahedron is being
used to represent the Earth, the truncated icosahedron is
“unfolded” to form a plane such that the above described
ways of identifying the cells can be applied.

[0130] An unfolded truncated icosahedron has 20 hexago-
nal faces and 12 pentagonal faces. However the indexing
method described above is based on hexagonal cells. There-
fore, the rules of hexagonal coordinates are not applicable for
all the cells resulting from subdivision of the truncated icosa-
hedron. That is, the pentagonal faces needs to be addressed
such that the above described indexing method for hexagonal
cells of assigning hexagonal coordinates are functional.
[0131] There are more than one way to unfold the truncated
icosahedron have all its faces on a plane. To facilitate appli-
cation of the above described indexing system, the truncated
icosahedron is unfolded such that the pentagons are located at
the boundaries. The pentagons at the boundaries are then
considered as hexagons that are missing one edge. On the
edge that does not exist, there is no neighbouring cell. FIG. 19
shows an unfolded truncated icosahedron 160 in which pen-
tagons 162 are located on the boundaries. Note that each of
the pentagons 162 illustrated in the FIG. 19 include the imagi-
nary edge 164 to assist with visualization them as hexagons
with a missing edge.

[0132] FIG.19 only illustrates the tessellation of cells at the
first resolution. There are many ways to unfold the truncated
icosahedron at other subsequent resolutions. It is possible to
apply the algorithm used by PYXIS as described in U.S. Pat.
No. 8,018,458 to unfold further resolutions. For example,
FIG. 20 shows an unfolded truncated icosahedron at a second
resolution tessellation based on the rule that faces of type A
create one child and faces of type B create seven children. The
cells are assigned integer-based identifying values as
described herein above. The grey hexagons 166 located on the
boundary are pentagons.

[0133] After providing several tessellations of finer and
finer resolutions, the unfolded truncated icosahedron devel-
ops into a fractal-like shape. Fractal-like coverage may not be
appropriate for the indexing method for at least two reasons.
First, the space covered by the cells may differ from resolu-
tion to resolution. Accordingly, some points that belong to
cells of one resolution may be out of the cells at another
resolution. For example, FIG. 21 illustrates truncated icosa-
hedron and its faces’ indices at the first and second resolu-
tions. Points 168 are points which exist at the first resolution
but not at second resolution. This may be problematic because
after several resolutions there are some fine cells that are
entirely out of cells at coarser resolutions and finding the
parent of such cells using the equations (6) to (9) may not be
possible or be computationally expensive.

[0134] In general, the PYXIS definition for children of a
coarse cell may not desirable since it considers the fine cells
as the children of a coarse cell that are not physically covered
by that coarse cell. As a result, a search on the cells that are
between of the fine and coarse resolutions in the hierarchy is
required. To avoid such ambiguity, all the fine cells that are
covered by a coarse cell are considered to be its children.
Then the equations (6) to (9) could be applied for hierarchical
traversal.

[0135] A second reason why the fractal coverage may not
be desirable is that handling the cells on the boundary is
difficult for fractal-like coverage since they do not have a
predictable and straightforward boundary shape at different
resolutions.

Sep. 18,2014

[0136] To avoid having fractal-like coverage, subsequent
resolutions of the truncated icosahedron are unfolded based
on its shape at the first resolution. FIG. 22 illustrates the
truncated icosahedron at the second resolution using the
shape of the first resolution. The cell 170 is a full cell and the
pentagonal shapes 172 are partial cells created by a cell at the
first resolution. The partial cells 176 make a full cell in both
3D and unfolded truncated icosahedron. The partial cells 174,
178, and 179 are located on the boundary. The partial cells
174,178 and 179 become adjacent to each other to form a full
cell 180 when the truncated icosahedron is folded. (i.e. in the
3D truncated icosahedron).

[0137] Using this method of unfolding the truncated icosa-
hedron, the space covered by cells remains the same at all
resolutions therefore there is no point that belongs to one cell
at one resolution and does not belong to the cells of another
resolution.

Partial Cells and Boundary Cases

[0138] Referring again to FIG. 22, the partial cells (e.g.
partial cells 174, 178, 179) are portions of vertex children of
a first resolution hexagon. If a child hexagon is covered by
three different coarse cells at the first resolution, it is divided
into three partial cells. Using partial cells as an element of the
subdivided truncated icosahedron, every cell at the first reso-
Iution covers some full and partial cells. Moreover, having
such a definition we can avoid fractal coverage for subsequent
resolutions and finding all possible parents of a cell is easier.
[0139] Consider the partial cell 174 in FIG. 22. It is part of
the cell with index (8,3),. Cell (8,3), is not completely on the
area covered by 32 faces of the unfolded truncated icosahe-
dron. The partial cell 174 and two other partial cells 178, 179
connect to form a complete cell on the 3D truncated icosahe-
dron, for example as shown in FIG. 23.

[0140] Finding connected partial cells are important opera-
tions for neighbourhood finding since every neighbour of a
3D cellis located beside a different partial cell. In addition, to
find all parents of a vertex child, it is required to find all partial
cells since every partial cell represents a different parent. The
objective, therefore, is to find the indices (identifying values)
of the partial cells 178 and 179 given the index of the partial
cell 174 (8, 3),. To determine the indices for partial cells 178
and 179, it is first determined whether the partial 174 is on the
boundary. Then the other adjacent partial cells in the 3D
truncated icosahedron (i.e. the partial cells 178 and 179) are
identified. This will now be described with reference to FIG.
24.

[0141] In general, to determine whether a cell is on the
boundary or not, the first resolution parents of the cell must be
computed. If all parents are amongst of the original 32 faces
of the truncated icosahedron, then this cell resides in the
interior. Otherwise it lies on the boundary. Consider cell
(8,3), indicated by reference numeral 180. The identifying
value of the parent of the cell 180 is determined, for example,
by using the method described herein above. The cell 180 has
three parents with indices (4,3),, (5,4), and (5,5),. However,
only cell (4,3), is among the indices of 32 faces of the trun-
cated icosahedron from the first resolution. As such, it could
be determined that the cell (8,3), is located on the boundary.
[0142] The nextissue involves determining adjacent partial
cells on the 3D truncated icosahedron. Consider a cell located
on the boundary, such as (8,3), in the FIG. 24. Cell (8,3), isa
child of (4,3), as described above. Since this unfolded trun-
cated icosahedron is not unique, the cell (4,3), is not on the
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boundary. In other words, instead of having hexagons cells
(-4,0), and (-4, —1),, there are cells (5,4), and (4,4), at the
first resolution. Therefore, the cell (-4,-1), is replaced with
cell (5,4),. The cell (5,4),, could be referred to as the “second
position” or “virtual position” of cell (-4, —1),. Extrapolating
this concept, the virtual cells could be used to determine
which partial cells are connected to each other in the 3D
truncated icosahedron. The virtual cells are also beneficial for
finding neighbours of boundary hexagonal cells.

[0143] To find these virtual positions a look-up table such
as Table 1 provided herein below could be used. Consider the
first row of the table. Let the selected hexagon (i.e. hexagon
whose data should be retrieved) has a partial cell on (4,3),. If
another partial cell of this hexagon is on (3,3), then it is
outside of the original 32 faces of the first resolution and its
virtual position is on the cell (2,2),. In other words, from the
position of a hexagon Table 1, the virtual positions of partial
hexagons outside of the initial 32 initial faces can be com-
puted. For example, since (8,3), belongs to (4,3),, the neigh-
bouring cells have virtual positions (4,3), (-4, 1), instead of
(5.4),, and (-4,0), instead of (4,4),.

[0144] Inorderto find the partial cell on cell (-4, -1), in the
truncated icosahedron, first one point on the (5,4), is selected
(i.e. one of the vertices which is on the cell (5,4),), and the
vector which connects the centroid of the (4,3), and the vertex
(FIG. 24) is selected. This vector is rotated 90 degrees and
added to the centroid of cell (-4, —1),,. The cell which includes
this point is computed using the equations (6) to (9). The
partial cell which is on the area of 32 faces of the first reso-
Iution should be picked as one of the partial cells attached to
the partial cell of the cell (8, 3),. The case of the other partial
cell is very similar. To obtain the rotation of the vectors, a
coordinate for virtual hexagons that captures the rotations can
be considered.

TABLE 1

Virtual position of hexagons on the
boundary based on their neighbours.

Planar hexagon neighbour Virtual position
4, 3) (3,3) (2,2
(4,4) (=4, 0)o
(4 (=4 -1)o
(2,2 (1,2)o (0, 1)
(2,3) (=4, 0)o
(353) (4, 3)
(0, 1) (=1, 1) (=2,0)o
(0,2)o (=4, 0)o
(1,2)o (2,2
(=2,0)o (=3,0)o (=4 -1)
(=2, 1) (=4, 0)o
(=1, 1) (0, 1)
(=4, -1) (=5,-1) (4, 3)
(=3,0)o (=2,0)o
(=5,-2)o (:3)
(> (4,0) (3, 0)
(6,2)o (=4 -3)
(6,1) (=3,-3)
(3,0) (4,0 G: 1o
B3,-1) (5, 0)
(2,1 (1, =1
(1,1 (2,1 (3,0)
(1,-2)o (5,0
(0,-2)o (=1,-2)
(=1,-2) (0,-2)o (1, =1
(=1,-3) (5,0
(=2,-3) (=3,-3)%
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TABLE 1-continued

Virtual position of hexagons on the
boundary based on their neighbours.

Planar hexagon neighbour Virtual position
(=3,-3)% (=2,-3) (=1,-2)o
(=3, -4) (5, 0)o
(=4 -4) (; Do
;3 (6,3) (=4 -2)o
(6,4) (=4 -1)o
;2 (6,2)o (=4 -3)o
(6,3)o (=% -2)o
(=4 -2)o (=5,-2) (:3)o
(=5,-3% ;2o
(=4 -3) (=5,-3)% ;2o
(=5, -4) (; Do
(=4, 0o (=3,0)o (=2,0)o
(=5, -4) (; Do
(=5, -4) (; Do
(=5, -4) (; Do
(5, 0) (=3,0)o (=2,0)o
(=5, -4) (; Do
(=5, -4) G: Do

Converting PYXIS Indexing to Integer-Based Indexing

[0145] In some cases, it may be desirable for the indexing
above to be translated to PYXIS indexing disclosed in U.S.
Pat. No. 8,018,458 and vice versa.

[0146] Inthe PYXIS indexing, every cell is indexed using
its parent’s index and appending a digit associated with the
direction of the cell to its parent. Every cell indexed by
PYXIS method has a integer-based index from the first reso-
Iution and a direction denoted by an identifying value such as
a number between 1 and 6, which refers to corresponding
vectors in hexagonal coordinates (identifier “0” represents a
centroid child therefore no vector in hexagonal coordinates is
necessary). Based on these, a first resolution cell may be
directed through the associated vectors to find the corre-
sponding integer-based indexing.

[0147] Referring now to FIG. 25, illustrated therein is
unfolded truncated icosahedron for the first resolution tessel-
lation 190 cells that are assigned exemplary PYXIS identifi-
ers. The cell indexed by “A” in PYXIS method could be
assigned a first identifier value (0,0),, similar to the same cell
shown in FIG. 19.

[0148] The six digits used by PYXIS indexing can be inter-
preted as six vectors at odd and even resolutions. FIG. 26
illustrates the relationship between PYXIS digits and their
equivalent vectors at odd and even resolution. The cells indi-
cated by reference numeral 192 shows the PYXIS indexing in
an even resolution tessellation and the cells indicated by
reference numeral 194 shows the integer-based indexing
described herein above in the even resolution. Similarly, the
cells 196 shows the PYXIS indexing in an odd resolution
tessellation and the cells 198 shows the integer-based index-
ing described herein above in the odd resolution.

[0149] To convert the PYXIS index to the integer-based
index, the integer-based index corresponding to the first ele-
ment of the PYXIS indexing is first determined. Then, since
every digit appearing after the first element of PYXIS index-
ing represents a vector in the integer-based indexing, each
vector is converted to the integer-based indexing until appro-
priate integer-based identifier for the cell is obtained.

[0150] Referring now to FIG. 27, illustrated therein are
three resolutions of cells assigned with PYXIS identifiers. It
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is possible to efficiently determine which resolution the cell is
in due to the nature of PYXIS indexing. For example, the cell
200 with the identifying value KO2 is at the third resolution
since the length of the index is three (I.e. has three characters).
The identifier “K” indicates the starting cell 202 at the first
resolution. From the identifying value “0”, it can be deter-
mined that the cell 204 is a centroid child of cell “K”. The cell
200 is one more resolution finer than cell 204 and it is a vertex
child located in the direction associated with the identifier “2”
as shown in the cells 192 in FIG. 26.

[0151] An exemplary translation from the PYXIS index to
the integer-based index will now be described with reference
to FIGS. 27 and 28. To find the equivalent integer-based index
form a PYXIS index, the first element of the PYXIS index is
mapped to the corresponding integer-based index (e.g. as
shown in FIGS. 19 and 25). For example, for given a cell 210
with the PYXIS identifier “K02”. In the first resolution tes-
sellation 212, it can be determined that the identifier “K”
corresponds to cell (3,1),. In the second resolution tessella-
tion 214, as the identifier <0 is associated with hierarchical
down traversal to the centroid child, it is possible to use the
equation (12) to find the integer-based index (4,-1),. In the
third resolution tessellation 216, the identifier “2” suggests
that the cell is a vertex child cell whose centroid is at a vertex
corresponding to the associated “2”. As such, it is possible to
determine the integer-based index corresponding to the iden-
tifier “2” by adding an appropriate vector. The equation (15)
can be executed to traverse down to centroid cell (9,3), and
then direction vector (0, 1), from FIG. 26 can be added to
obtain the integer-based identifying value (9, 4), for the cell.
[0152] PYXIS indexing works based on the fractals that
every coarse cell makes. Every cell is indexed based on the
first resolution shape. Since some of the PYXIS fractals
expand more than one coarse cell, they might be out of the
first resolution faces of the truncated icosahedron. Therefore
using the above conversion, the obtained integer-based index-
ing (i, j), may not be a valid index. To avoid this issue, after
finding the integer-based index, an additional determination
is made as to whether (i, j), is covered by the first resolution
faces of truncated icosahedron. Although the PYXIS fractals
may expand more than one coarse cell, they do not expand
more than two cells. Therefore, if (i, j),. is not covered by a first
resolution cell, it must be covered by a coarse cell (a, b), for
which there is a virtual position (c, d),. The Table 1 can be
utilized to find (c, d), based on (a, b),. The vector connecting
the centroid of (a, b), to the centroid of (i, j), is then deter-
mined. Then the cell whose centroid is the addition of this
vector to the centroid of (¢, d), is determined.

[0153] FIG. 29 illustrates the above scenario. In this
example, let cell 220 with the integer-based index (52,32), be
the identifier (i, j),. This cell 220 is covered by cell 222 whose
integer-based index is (6,4),. The cell 222 has a virtual posi-
tion (-4, -1),. The vector 224 connecting the centroid of
(6,4), and centroid of (52, 32), is determined. This vector is
added to the centroid of (-4, —1), and the index covering the
resulting point at resolution r=4 is determined using the equa-
tions (8) and (9) to obtain the identitying value (=38, -13),.

Converting PYXIS Indexing to Integer-Based Indexing

[0154] Insomecases, it may be necessary to convert a given
cell with a integer-based identifying value to obtain a corre-
sponding PYXIS identifying value. Consider a given integer-
based index (a, b), that is to be converted to corresponding
PYXIX claim. It is possible to convert this integer-based
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index to a corresponding PYXIS index by recognizing the
following two properties of the integer-based indexing
described below. These properties help identify types A and B
in the aperture 3 hexagon tessellations.

[0155] The first property of the integer-based indexing
states that a cell with index (c, d),.,,, is a centroid child if and
only if (c+d)=0 (mod 3).

[0156] Proof: Assume that (c, d),.,; is a centroid child. It
must be demonstrated that (c+d)=0 (mod 3). Given (c, d),+,
is a centroid child, it must have a single parent cell which shall
be denoted as (a, b),_;. First consider the case where “r” is
even. Based on the equation 12, it can be determined that:

(a,6),~(a+0,20-0),.,1 (¢, ),y

The index of its centroid child for a cell with index (a, b), is
equal to (c, d),, ,=(a+b, 2b-1),,,. As a result:

c+d=(a+b)+(2b-a)=3b

Clearly, 3b=0 (mod 3).

[0157] Similar reasoning could be applied for the odd reso-
Iution tessellations. Based on the equation (15), it can be
determined that:

c+d=(2a-b,a+b),, =3a

Clearly, 3a=0 (mod 3). Therefore every centroid cell with
index (c, d),, r>1 satisfies the equation (c+d) =0 (mod 3).
[0158] It is also necessary to show that any index (c, d),.;,
r>1 satisfying (c+d) =0 (mod 3) belongs to a centroid child.
As such, it must be shown that combination of vectors creat-
ing anindex (c, d),.;, r>1 such that (c+d) 0 (mod 3), is a vector
connecting the centroids of two centroid children. It is known
that (0, 0),., ;, r>1 is a centroid child of the cell (0, 0), because
their centroids are the same point at the origin.

[0159] Allvectors (g, h),, , thatcan be added to (0,0),, , and
relation (g+h) =0 (mod 3) is still valid are the combinations
of vectors (152)r+15 (2sl)r+1s (ls _l)r+1s (_ls l)r+1s (_ls _2)r+1s
and (-2, -1),, ;.

[0160] Consequently, if (c+d)=0 (mod 3), it can be written
as the combination of these six vectors. Based on the equa-
tions (10), (11), (13) and (14), the cells with the indices of
these six vectors are centroid children of the cells with the
indices of (0, I),, (1,0),, (1, 1),, (-1, 0),, (-1, -1),.and (0, -1),.
(e.g. see FIG. 27). As a result, every cell with an index (c,
d),.,;, =1 such that (c+d)=0 (mod 3) belongs to a centroid
child.

[0161] The second property of the integer-based indexing
states that a cell with index (e, 1),,, r>2 such that e=f=0
(mod 3) is a centroid child and creates seven children in the
PYXIS method.

[0162] Proof: All vectors at resolution r can be written as
the combination of vectors (0, 1), and (1, 0),. It could be
determined using the equation (16) that (0, 1),=(0,3),,, and
(1, 0),=(3,0),.,,. Since all the vectors satistying the relation
e=f=0 (mod 3) are made from the combinations of (0, 3),.,,
and (3,0),, it can be concluded that every cell with index
satisfying e==f=0 (mod 3) has a parent including its centroid
at resolution r. In other words, it is the centroid grandchild of
a cell at resolution r. Therefore, at resolution r+1, there must
be a cell that is the centroid child of a cell at resolution r and
the parent of the cell at resolution r+2 satisfying e=t=0
(mod 3).

[0163] Consequently, every cell with an index (e, 1),, r>1
and e+f=0 (mod 3) is a centroid child, and every cell with the
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index (e, 1)r, r>1 such that e+f=0 (mod 3) is a centroid child
whose parent is also a centroid child and the parent of 7
children in PYXIS method.

[0164] The above two properties could be utilized to con-
vert identifying values in integer-based indexing to PYXIS
indexing. Given a cell with the integer-based index (a, b),., the
traversal sequence necessary for PYXIS indexing will now be
determined to find the corresponding PYXIS indexing. To
find the corresponding PYXIS index for (a, b),, it is sufficient
to find the direction vectors and transitions between (a, b), and
(e, f),, which is the PYXIS parent of (a, b), at the first reso-
lution.

[0165] From the two properties and the equations (12) and
(15), if (a+b) =0 (mod 3), then the parent of cell (a, b), is (c,
d),_, such that:

an

] where r— 1 is even
1

a+b 2b-a

. 18)
(c, d),y :( T3 ] ) where r —1 is odd

[0166] In order to find the sequence of PYXIS indexing
from (a, b),, the elements of PYXIS indexing from the cell in
the finest resolution to the first is determined. In every step,
the current element of the PYXIS indexing is determined
based on the transition vectors. When the first resolution (i.e.
resolution “0”) is reached, an identifying value such as a letter
or number corresponding to the appropriate integer-based
index at the first resolution is determined. The identifying
value “0” in PYXIS indexing is associated with a transition
between a centroid of a cell in the finer resolution tessellation
to a cell in the adjacent coarser resolution tessellation. Con-
sequently if (a+b)=0 (mod 3), then the identifier “0” (or any
other PYXIS identifier that represent this property) should be
appended to the sequence of PYXIS indexing.

[0167] If (a+b) =0 (mod 3), then this cell is a vertex child
and has been indexed by a centroid child. Therefore there
exists a cell in its neighbourhood with index (c, d), such that
c=d=0 (mod 3). Consequently, in order to find the parent of
the cell with such index, its neighbourhood is searched and
the vector connecting this cell to (c, d), is added to the
sequence for PYXIS indexing.

[0168] This process continues iteratively until the first reso-
lution is reached. At the first resolution, we have a cell with
index (e, f),. Based on FIGS. 19 and 25, the last entity of
PYXIS indexing is the letter or element which is equivalent to
(e, ). The reverse of the sequence of the elements obtained
by the above method is the PYXIS indexing.

[0169] An exemplary determination of corresponding
PYXIS index based upon a given integer-based indexing will
now be described with reference to FIG. 30. The exemplary
integer-based identifying value for the given cell 230 is (-1,
1);. The identifying value for the parent cell 232 of the given
cell 230 can be determined based on the equation (17). In this
case, the parent cell 232 has an identifying value of (-1, 0),.
Therefore a zero must be appended to the PYXIS indexing.
The cell (-1, 0), is a vertex child and has a centroid child 234
in its neighbourhood with the index of (0, 0),. Based on FIG.
26, the element which must be attached is ‘1°. The equation
(17) is utilized again to determine the parent cell 236 of the
cell (0,0),, which has an index of (0, 0),. As the cell 234 is a
centroid child and its parent is found, and a “0” is appended to
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the PYXIS identifier sequence. Similarly the parent cell 238
of'cell 236 is determined using the equation (17) and another
“0” is added to the PYXIS identifier sequence. In the next
step, a corresponding PYXIS identifier for cell (0,0), is deter-
mined. Based on FIGS. 19 and 25, the cell (0, 0), is equivalent
to “A”. Therefore “A” is appended to the PYXIS identifier
sequence. The sequence is reversed and the PYXIS index of
A010 is then obtained. Accordingly, the integer-based index
(-1,1); corresponds to PYXIS index of A010.

Indexes of the Pentagons

[0170] In PYXIS indexing, pentagonal cells are indexed
using a similar process to hexagonal cells. In this indexing,
pentagons have five children that are indexed using their
parents’ indices appended by a number between 1 and 5.
Correspondence between vectors and elements of PYXIS
indexing for hexagons illustrated in FIG. 26 is similar for
pentagons.

[0171] The vectors of hexagonal coordinates are not gen-
erally applicable for pentagons. However, the pentagon cells
are treated as virtual hexagons on 2D domain (i.e. in the
unfolded truncated icosahedral plane), it is possible to treat
pentagons as hexagons and apply hexagonal vectors for them.
However, using this vectors’ adaptation, one of the vectors is
undefined for pentagons. This undefined vector varies at odd
and even resolution tessellations. It also differs for pentagons
represented by a hexagon missing a top or bottom edge. In
FIG. 31, undefined vectors are illustrated using a white hexa-
gon 240. Note that for hexagons representing the odd resolu-
tion, half of two edges are missed. Since both located vectors
on these two edges result in partial hexagons of the same full
hexagon on 3D truncated icosahedron, one of them may be
arbitrarily chosen. Therefore, for odd resolution pentagons
represented by a hexagon missing a top edge, there is no
difference between (0, 1), and (1, 1),. However, for the con-
sistency of presentation, identifier (0, 1), is selected.

[0172] Referring now to FIG. 31, illustrated therein are the
exemplary identifier digits of pentagons and hexagon with a
missing edge. Hexagons 242, 244, 246, 248, 250, shown in
the first column of FIG. 31 are equivalent to the hexagons with
the same reference numeral in the third column. Hexagons
240 represents the undefined vectors and thus they do not
have a corresponding hexagon in the pentagons of the third
column. For example, if after converting a integer-based
indexing, a PYXIS index such as “J03” is obtained, a correc-
tion moditying “J03” to “J02” is applied based upon the first
row of FIG. 31. This is because “3” in a hexagonal PYXIS
index at an even resolution tessellation correspond to “2” in a
pentagonal PYXIS index.

[0173] Therefore, to convert a PYXIS indexing starting
with an element representing a pentagon at the first resolution
such as ‘J”in FIG. 25, instead of using vectors of FIG. 26, the
vectors of FIG. 31 are utilized. For example, a PYXIS index
“JO4” has an equivalent integer-based indexing with index
(9,5),. “J” represents (3,2), and “JO” is equal to (5, 1), which
is still a pentagon. The “4” in “J04” refers to one step going
down and adding vector (0, —1), to the result. Therefore, the
result is (9, 6),+(0, =1),=(9, 5),.

[0174] To find the PYXIS indexing generated by a penta-
gon from a given integer-based indexing, the converted
PYXIS indexing is first located. Then it is determined
whether it is indexed by a pentagon or not. If it has been
indexed by a pentagon, a correction is applied to the index.
This requires finding the first non-zero element appended to a
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pentagon’s index. This element is a number between 1 and 6.
This number is replaced with its appropriate number between
1 and 5.

[0175] Referring now to FIG. 32, illustrated therein is a
method 300 for identifying cells in a geographical informa-
tion system according to some other embodiments. The
server 52 or one or more another processor may be configured
to execute the method 300.

[0176] At step 302, a hierarchical series of additional tes-
sellations of successive resolutions is defined. Each resolu-
tion is indicative of an area of each cell in the tessellation of
the resolution. Each tessellation has a first axis and a second
axis. The first axis is perpendicular to a first side of the
hexagonal cells and the second axis is 120 degrees from the
first axis and is perpendicular to a second side of the hexago-
nal cells.

[0177] At step 304, an origin cell for each of the additional
tessellations is selected. The origin cell has the same centroid
as the origin cell in the tessellation of a previous resolution.
[0178] Atstep 306, aunique identifier is assigned to each of
the origin cells. The unique identifier for each of these cells
includes the identifier for the origin cell in the tessellation of
the previous resolution and a resolution value indicative of the
resolution of each origin cell.

[0179] At step 308, a unique identifier is assigned to each
cell other than the origin cell. The unique identifier for each of
these cells includes a first vector value, a second value, and a
resolution value. The first vector value and the second vector
value are indicative of the location of the cell to the origin cell
in the same tessellation along the first and second axis respec-
tively. The resolution value is indicative of the resolution of
the cell.

[0180] At step 310, the unique identifiers for the cells are
stored in the data storage device.

[0181] At step 312, data related to a geographical location
on Earth are stored in association with the cell associated with
the same geographical location in the data storage device.
[0182] Insome embodiments, hexagonal indexing for vari-
ous refinements may be conducted as described in the section
entitled “Multiresolution Hexagonal Coordinate System”
hereinbelow. This section also describes packing of hexago-
nal cells using diamonds and unfolding different polyhedrons
onto 2D domains.

Multiresolution Hexagonal Coordinate System

[0183] Inthis section, we present our hexagonal coordinate
system and describe how it is used for indexing. We then
establish a hierarchical relationship between resolutions of
the hexagonal refinements.

[0184] Multiresolution Relation Among Hexagons

[0185] To define a multiresolution relationship between
hexagonal cells, we first index children at fine resolutions and
then define algebraic relationships between hexagonal coor-
dinates at successive resolutions. We use the concept of hex-
agonal lattices to define such a relationship. Fach type of
hexagonal refinement can define a coordinate system for a
fine hexagonal lattice. We find the algebraic relationship of
the coarse and fine coordinate systems and then show how by
smartly choosing coordinate systems for hexagons, multi-
resolution relationships are obtained that are just scaling
matrices running in constant time.

[0186] When a refinement is applied to a lattice L, a new
lattice L, is created by a transformation/T,,which can be a
combination of scaling, rotation, and translation (L,=T, L, ).
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A coordinate system for L., can be defined by applying the
same transformation (T, to the coordinate system of L.
FIG. 33(a) illustrates the application of the dual 1-to-4 refine-
ment and resulting lattices. In this case, T, simply scales by
4. To achieve integer coordinates for centroids of lattice L,
unit vectors of L., have halfthe length of L. This results in the
coordinate system illustrated in FIG. 33(5). Notice coordinate
systems of two successive resolutions have the same origin O.
[0187] InFIG. 33, (a) shows coordinate systems of lattices
L,and L, at two successive resolutions, and (b) indicates that
(1,0)0=(2,0), (0,1)5=(0.2),.

[0188] By indexing hexagons this way, some hexagons in
L, getthe same index as others in L. To distinguish hexagons
at different resolutions, a subscript is added to each index
indicating its resolution.

[0189] To establish a multiresolution relationship between
hexagons, the index of the reference child of a hexagon with
index (a,b), is found. To do so, we find equivalent vectors to
basis vectors (1,0), and (0,1), of L, at the next resolution L, .
Let (1,0),=(m,n), and (1,0),=(p,q);. Then, in which R is the
refinement matrix. We can generalize this formula to k by
applying R* to (a,b),.

[0190] For instance, in dual 1-to-4 refinement as illustrated
in FIG. 1(b), (1,0),=(2,0), and (0,1),=(0,2),. Thus,

e[, )

and consequently (a,b),=2* (a,b), or in general (a,b),=2* (a,b)
.- In the following, we discuss how to find matrix R for the
other hexagonal refinements.

[0191] Dual 1-to-3 Refinement

[0192] In 1-to-3 refinement, hexagons are scaled by

1

V3

and rotated by

If we consider the same origin for two successive resolutions
and apply the

to the coordinate system, we can define the basis vectors for
a fine resolution. Then, we again find the corresponding vec-
tors to (1,0), and (0,1), in L,. As illustrated in FIG. 34,
(1,0),=(1,-1), and (0,1),=(1,2),. Thus,

w2 1)

and in general, (a,b),"=R*(a,b),,,”.
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[0193] In FIG. 34, (a) shows the coordinate system of lat-
tices at three successive resolutions of the dual 1-to-3 refine-
ment, where O is the origin, and (b) shows that a combination
of vectors at L, makes (1,0), and (0,1),,.

[0194] Note that choosing the hexagonal coordinate sys-
tems can be arbitrary. Different coordinate system for each
resolution leads to different basis functions and consequently
a different R. For instance, an alternative for dual 1-to-3
refinement is to choose a coordinate system for L., aligned
with the coordinate system of L, (FIG. 35). In this way, we
attain two different matrices in transitioning between even
and odd resolutions (R,_, ), and odd and even resolutions
(R,_..)- Such a coordinate system results in (1,0),=(2,1),
(051)0:(_151)15 (150)1:(15_1)25 and (051)1:(152)2'

[0195] InFIG. 35, (a) shows L, L,, and L, and their coor-
dinate systems, where O is the origin, lattices and coordinate
systems have similar color and thickness and (b) shows that a
combination of vectors at L, and L., makes (1,0), and (0,1),.

[0196] Ifwe choosethe coordinate systems of even and odd
resolutions aligned with L, and L, respectively, with the same
origin, we have:

1 1 2 -1
Rose = ( ] and Re o = ( ]
12 1 1

Notice that

30
(2 )
03

which is in fact just a scaling factor. Therefore, by cleverly
choosing the coordinate systems illustrated in FIG. 34, after
two levels of refinement the indices of hexagons are scaled by
three and rotation is not needed anymore. Having scalar fac-
tors instead of matrices for hierarchical transition speeds up
the computation process since we can discard matrix multi-
plications. Consequently, to compute the index of the refer-
ence child we simply use the following:

k
32(a, b)4

. . Eng b

k=1
372 R.0(a, b)Lk otherwise

Dual 1-to-7 Refinement
1-to-7 refinement introduces

SRER
asi 7% =

rotation and /7 scaling in the hexagonal lattice. Two types of
lattices can be generated by 1-to-7 refinement when L, is
rotated by +£19°. We call the refinement matrix with +19°
rotation, R, and the refinement matrix with —-19°, R _.

[0199] In FIG. 36, (a) shows matrix R_, and (b) shows
matrix R,.

[0197]
[0198]
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[0200] If we apply the transformation T, ~y7rot(x19° to
the axes of coordinate systems, matrices R, and R_ are
defined. As illustrated in FIG. 36, (1,0),=(2,-1), and (0,1),=
(1,3); inR. As aresult,

R (“]R
Tlo 3)7

is also constructed by relations (1,0),=(3,1),, and (0,1),=(-
1,2),. Then

e, 5]

with this approach, we have (a,b),”~R *(a,b),,,” or (a,b)
=R _*(a,b),,,”. Lattices resulted from R, or R_ do not align
with L, since kx19° #360° when keZ and k=0 or 360. Con-
sequently, it is not possible to extract a scalar from the mul-
tiplications of refinement matrices R, and therefore handling
multiresolution queries at resolution r needs O(r) matrix mul-
tiplications. However, notice that

70
R+R,:R,R+:(0 7]

which is just a scaling factor without rotation. This is due to
the cancellation of —=19° and +19° rotations. As a result, if we
apply 1-to-7 refinements with positive and negative rotations
alternatively, we can get the same scaling factor for the
refined resolutions and have aligned axes between alternating
resolutions (see FIG. 37). Discarding the matrix multiplica-
tion, multiresolution relationships are simplified to the fol-
lowing closed forms that run in constant time:

k
72(a, b) .y

o[4]-4 @

k-1
72 (R, VR )a, b)L,, otherwise

(a. b), =

[0201] FIG. 37 shows that applying one step of R, along
with one step of R_ leads to aligned coordinate systems for L,
and L,.

[0202] In general, for a refinement with factor of i, we can
alternately apply a 1-to-i refinement having +0 rotation and
-0 rotation. This way, after two resolutions, we only have i
scaling and no rotation. Therefore, multiresolution relation-
ships can be simplified to scalar multiplications running in
constant time instead of matrix multiplications running lin-
early based on the resolution.

[0203] Primal 1-to-3 Refinement

[0204] Inprimal refinements, centroids of hexagons at two
successive resolutions are not aligned (see FIG. 38). As a
result, their reference child is not the centroid child. In these
refinements, we choose the reference child as one of the fine
hexagons whose centroid falls in the coarse hexagon. The
same matrices proposed in the sub-section entitled “Dual
1-to-7 Refinement” give the index of the reference child.
Consequently, from the location of the origin, which is the
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centroid of the reference child of (0,0), and the refinement
matrix R, the indices of hexagons’ children at resolution r+1
can be computed.

[0205] To align lattices L, and L, of a primal 1-to-3 refine-
ment, a translation is incorporated as illustrated in FIG. 38. As
a result, a translation difference exists between the origin of
L, and L,. Using a predetermined pattern for choosing the
origin helps to find a closed form for computing the locus of
a given resolutions.

[0206] For instance, we choose

! 1,1
3D
for the origin of resolution r+1 when r is even, and

! 1, -1
1 -1),

for odd r. FIG. 38(b) illustrates such origins for L; and L,.
This way, we have the origin at

1
5[(1, Do+ (=1 =Dy + (L, I+ ..+ (21, £1),]

for r=1. Since
1

(L 1)2; = a(la 1)1

and similarly
1

(—L —1)2; = §(—1, —1)1-

We have
1 1 1 1

3 (1, Do+ (=1, -1); + 5(1, Do + 5(—1, -+ + y(il, D)oy |-

From the sum of the first n terms of this geometric series, the
locus of the origin is

This is one possibility for determining the origin of the next
resolutions. Alternative origins may be leads to different but
closed form formulae.

[0207] Now referring to FIG. 38, FIG. 38(a) T, is applied
on the coordinate systems. FIG. 38(b) after two resolutions,
coordinates are aligned.
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[0208] Primal 1-to-4 Refinement

[0209] In the primal 1-to-4 refinement, centroids of hexa-
gons become aligned after two resolutions. Therefore, it is
possible to have one origin for odd resolutions and one for
even resolutions. Let the origin of even resolutions be located
at (0,0),. Then, the origin of odd resolutions are located at

11
(&3),

Since the factor of refinement of primal and dual 1-to-4
refinement is the same, the same matrix

is used. Applying R to (a,b), gives the index of (a,b),’s child
whit a translation difference of

11
(&),

with the centroid of (a,b), (FIG. 39(a)).

[0210] InFIG. 39, (a) shows primal 1-to-4 refinement and
its coordinate systems in three successive resolutions. After
two resolutions centroids of hexagons are aligned. (b) shows
primal 1-to-7 refinement and its coordinate systems in three
successive resolutions. After two resolutions centroids of
hexagons are also aligned.

[0211] Primal 1-to-7 Refinement

[0212] Similar to primal 1-to-4 refinement, centroids of
hexagons in dual 1-to-7 refinement are aligned after two
resolutions (FIG. 39(5)). Therefore, we simply choose (0,0),,
as the origin of even resolutions and

5 4
(1),

for odd resolutions. We apply the same matrix discussed in
the sub-section entitled “Dual 1-to-7 Refinement” on a hexa-
gon with index (a,b), to get its child with a translation difter-
ence of

(-5
217 21),

with (a,b),’s centroid.

[0213] Reverse Relations

[0214] For any refinement, a matrix R exists and issued for
finding the reference child of a hexagon at subsequent reso-
Iutions. A relation to traverse back through the resolutions and
find the parent of a hexagon is desired.

[0215] Ifwe apply R™" to the index of a reference child of
hexagon (a,b),, the result would be (a,b),. However, if we
apply (R™1)* onan arbitrary hexagon (c,d),,, it gives index (4,
b), in which 4 and b are not necessarily integers. To obtain a
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valid integer index at resolution r, we use ([4], [b]),=(a,b),.
Due to the application of the floor function, all hexagons
falling in diamond D are mapped to (a,b), as illustrated in
FIG. 40. This leads to a diamond based hierarchy for hexago-
nal cells.

[0216] We consider all the hexagons that are covered by a
diamond length at (a,b), as the children of a hexagon with
index (a,b),. FIG. 40 illustrates such a diamond and hexagons
that it covers for dual 1-to-3 and primal 1-to-4 as two
examples. This type of hierarchy is easier to handle rather
than other fractal based hierarchies due to its simple boundary
and coverage. We use diamonds for covering the surface of
initial polyhedra and a diamond-based hierarchy to index
subsequent resolutions.

[0217] InFIG.40,(a)shows Diamond Dis at (a,b),, and (b),
(c) show the Hexagons are covered by D in dual 1-to-3 and
primal 1-to-4 refinements respectively for two successive
resolutions.

Indexing Polyhedra

[0218] So far, we have discussed how to index planar hexa-
gons on lattices resulting from different types of hexagonal
refinements. To apply this indexing method to polyhedra, a
2D coordinate system must be defined for the polyhedron.
Therefore, we need to unfold the polyhedron.

[0219] From existing polyhedra, refining the tetrahedron,
octahedron, icosahedron, and truncated icosahedron creates
regular hexagons. The unfolded pattern of the truncated
icosahedron is also created using the pattern of icosahedron
since truncated icosahedron is actually the refined version of
an icosahedron. As a result, we provide the 2D patterns of
tetrahedron, octahedron, and icosahedron in this section and
we discuss how our proposed indexing works for them.
[0220] Polyhedra can be unfolded in many ways. However,
any refined polyhedron creates singular (non-hexagonal)
faces that deviates from a regular lattice based indexing. To
avoid such an issue, the unfolding is selected to ensure that
these singular faces are located on the boundary. This way, we
treat them like hexagons while tracking their indices for tak-
ing care of their irregular behaviors.

[0221] Each polyhedron can be divided into diamonds by
joining two adjacent equilateral triangles corresponding to
the faces of the polyhedron. Each diamond has its own coor-
dinate system. The coordinate system of diamond is used to
define its boundary. It is desired to have hexagonal coordinate
systems aligned with the coordinate system of diamonds
since it eases further calculations such as neighborhood find-
ing of hexagons at boundaries.

[0222] The initial polyhedron is very coarse for the initial
resolution of the Earth, therefore we refine the polyhedron
two times by the dual 1-to-3 refinement and then unfold the
polyhedron. This way, we have a finer initial representation
for the Earth and a coordinate system for hexagons aligned
with that of the diamonds. FIG. 41 illustrates unfolded poly-
hedra after two refinements by the dual 1-to-3 method. Dia-
monds creating a polyhedron are distinguished by numbers
(FIG. 41). A hexagon which falls in diamond d with index
(a,b), gets index [d,(a,b),]

[0223] FIG. 41 shows unfolded patterns of the icosahedron
(a), octahedron (b) and tetrahedron (c). Red coordinate axes
U-V determine the coordinate systems of each diamond. (d)
shows hexagon (a,b), and its neighborhood vectors based on
the illustrated U-V coordinate system.
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[0224] From the index of a hexagon, we find its neighbors
using neighborhood vectors. Neighborhood vectors are added
to the index of a hexagon and the result is the indices of its
neighbors. FIG. 41 (d) illustrates the neighborhood vectors.
Some hexagons exist whose neighbors are located in multiple
diamonds. To find all neighbors of such hexagons, we need to
determine hexagons covered by a diamond.

[0225] Consider the hexagons in FIG. 41 at the initial reso-
lution, r=0. A hexagon with index (a,b), is in diamond d if
O=a,b<3, a,beN. This coverage relation can be extended for
subsequent resolutions. Ifthe coordinate systems of hexagons
at the next resolutions are also aligned with coordinate sys-
tems of diamonds, maintaining this coverage relation is just
the matter of multiplication. We discussed how to obtain
aligned coordinate systems in the previous section for each
refinement. Coverage relations can be extended for any reso-
Iution as shown in Table 2. Note that the initial coverage of
diamonds for a tetrahedron is different as illustrated in FIG.
41 (b). In a tetrahedron, diamond 1 covers hexagons with
index (a,b), if O=a,b<3, a,beN while diamond 2 covers hexa-
gons (a,b), when 0<b<3 and 0<a<3. Despite this difference,
we can extend these relations based on the refinements similar
to Table 2.

TABLE 2

Type of refinements and their effects on the coverage
relation of a diamond. Note that in 1-to-7 refinements, R, and
R_ are used alternating.

Type Constraint Including Conditions
D/P 1-to-4 N/A O=ab<3x2"
D/P 1-to-7 r r O=<a,b<3x7
[51=3
D/P 1-to-3 [rJ r O=a, b<3*t
2172
[0226] Except for 1-to-4 refinement, the coordinate system

of diamonds is not aligned with coordinate system of hexa-
gons at odd resolutions. In this case, to detect hexagons cov-
ered by a diamond, indices of hexagons are mapped to the
coarser even resolution by R,_,_~!. Then, the resulting index
is checked based on the rules of Table 2 to detect whether itis
covered by the diamond.

[0227] If one of the neighbors of hexagon [d,(a,b),] is not
covered by d, it is located in a diamond connecting to d. For
example, consider [1,(2,1),] in an icosahedron. If we add
neighborhood vectors to (2,1),, its two neighbors (3,2), and
(3.1), exist outside of diamond 1 (based on Table 2). To
determine the diamonds’ neighbors, we form a look-up table
in which edges of diamonds are associated with their neigh-
bors. We encode edges of a diamond using four numbers from
0 to 3 as illustrated in FIG. 42. Both (3,1), and (3,2), are
located on edge 1 in diamond 1. In the look-up table, we have
that diamond 1 at edge 1 is connected to diamond 2 at edge 3.
From this information, we can map (3,1), and (3,2), in dia-
mond 1 to (0,1), and (0,2), in diamond 2.

[0228] Note that non-hexagonal faces are also placed at
computable locations. For instance, pentagons are located at
(0,0),.1n all diamonds of an icosahedron except diamonds 1
and 10 in which (0,max) is also pentagon. Note that the value
of'max can be obtained using Table 2. For instance, max=3x2"
in D/P 1-to-4 refinement. To find the neighbors of non-hex-
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agonal faces, we treat them like hexagons adding neighbor-
hood vectors to the indices. Of the six neighbors generated for
this non-hexagonal face, there will be a repetition of neigh-
bors. We discard such duplicates.

[0229] In FIG. 42, (a) shows hexagons assigned to a dia-
mond of an icosahedron or octahedron, (b) shows encoding
edges of a diamond, (c) shows finding the hexagons that are
out of diamond 1. Neighbors of red hexagon (2,1), is desired.
Bluehexagons (3,2),and (3,1), are obtained by adding neigh-
borhood vectors to (2,1), (red hexagon). Blue hexagons (3,2),,
and (3,1), are out of diamond 1. Blue hexagons (3,2), and
(3,1), are mapped to valid green hexagons (0,1), and (0,2), of
diamond 2.

[0230] While the above description provides examples of
one or more apparatus, systems and methods, it will be appre-
ciated that other apparatus, systems and methods may be
within the scope of the present description as interpreted by
one of skill in the art.

We claim:

1. A computer-implemented method for assigning identi-

fiers, the method comprising:

(a) defining a tessellation of hexagonal cells, the tessella-
tion having a first axis and a second axis, the first axis
being perpendicular to a first side of the hexagonal cells,
the second axis being 120 degrees from the first axis and
being perpendicular to a second side of the hexagonal
cells;

(b) selecting an origin cell for the tessellation and assigning
a unique identifier comprising a first value and a second
value thereto; and

(c) assigning a unique identifier to each cell other than the
origin cell, the unique identifier for each of these cells
comprising a first vector value and a second value, the
first vector value and the second vector value being
indicative of the location of the cell to the origin cell
along the first and second axis respectively.

2. The method of claim 1, further comprising:

(a) defining hierarchical series of additional tessellations of
successive resolutions, each resolution indicative of an
area of each cell in the tessellation of the resolution;

(b) selecting an origin cell for each of the additional tes-
sellations, the origin cell having a same centroid as the
origin cell in the tessellation of a previous resolution;

(c) assigning a unique identifier to each of the origin cells,
the unique identifier for each of these cells comprising
the identifier for the origin cell in the tessellation of the
previous resolution and a resolution value indicative of
the resolution of each origin cell; and

(d) assigning a unique identifier to each cell other than the
origin cell, the unique identifier for each of these cells

Sep. 18,2014

comprising a first vector value, a second value, and a
resolution value, the first vector value and the second
vector value being indicative of the location of the cell to
the origin cell in the same tessellation along the first and
second axis respectively, and the resolution value being
indicative of the resolution of the cell.

3. The method of claim 2, wherein the configuration of the
cells in the tessellations of successive resolutions are oriented
differently in an alternating manner such that the cells in the
tessellation of a given resolution is rotated 30 degrees in
comparison to the cells in the tessellation of the next resolu-
tion and the cells in the tessellation of the previous resolution.

4. A digital Earth information system based upon hexago-
nal subdivision of a polyhedron representation of the Earth
comprising:

(a) a data storage device;

(b) at least one processor coupled to the data storage

device, the processor configured to:

(1) define hierarchical series of additional tessellations of
successive resolutions, each resolution indicative of
an area of each cell in the tessellation of the resolu-
tion, each tessellation having a first axis and a second
axis, the first axis being perpendicular to a first side of
the hexagonal cells, the second axis being 120 degrees
from the first axis and being perpendicular to a second
side of the hexagonal cells,

(ii) select an origin cell for each of the additional tessel-
lations, the origin cell having a same centroid as the
origin cell in the tessellation of a previous resolution,

(iii) assign a unique identifier to each of the origin cells,
the unique identifier for each of these cells comprising
the identifier for the origin cell in the tessellation of
the previous resolution and a resolution value indica-
tive of the resolution of each origin cell,

(iv) assign a unique identifier to each cell other than the
origin cell, the unique identifier for each of these cells
comprising a first vector value, a second value, and a
resolution value, the first vector value and the second
vector value being indicative of the location of the cell
to the origin cell in the same tessellation along the first
and second axis respectively, and the resolution value
being indicative of the resolution of the cell,

(v) store the unique identifiers for the cells in the data
storage device, and

(vi) store data related to a geographical location on Earth
in association with the cell associated with the same
geographical location in the data storage device.
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